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LE'ITER TO THE EDITOR 

Quantum electrodynamics: large N, computation of the 
critical exponent q in arbitrary dimensions 

J A Gracey 
Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger ZOC, 
SF-00170 Helsinki. Finland 

Received 8 February 1991 

Abstract. We compute the critical exponent 7, which relates to the anomalous dimension 
ofthe electron, in the large N' expansion of QED at leading order in arbitrary dimensions 
in the Landau gauge. Subsequently we show that transcendental numbers will arise at fifth 
order and beyond in the corresponding renormalization group function in four dimensions. 

The quantum properties of a renormalized quantum field theory are characterized by 
the renormalization group equation which depends on the renormalization group 
functions, such as the p-function and the anomalous dimension, y (g ) .  The latter are 
ordinarily calculated in perturbation theory by rendering various Green functions of 
the theory finite to a particular order. Invariably, though, one can only calculate to a 

probe perturbation theory more deeply, alternative techniques are required. For low 
dimensional U models, such methods are available [ I ,  21. There one solves the model 
a t  the d-dimensional critical point, 2 < d <4,  within the large N expansion, by comput- 
ing various critical exponents in arbitrary dimensions, which are related to the critical 
renormalization group functions. Hence, one can deduce information to all orders in 
pertcrbztion theory a! the appropriate order of the ! c g e  .N expansion. 

As quantum electrodynamics (QED) admits a large Nr expansion, where NF is the 
number of electron flavours, i t  is the purpose of this letter to apply the methods of 
[2] to deduce the exponent q at O(l/Nr)  in arbitrary dimensions. The theory is similar 
to the U models in that it has a coupling constant which is dimensionless in a particular 
dimension, in this case four, and hence there is a non-trivial critical point at g,, where 
,~ B(P-) ~u.I = O  in  d 1 4 .  This is of interest for various reasons. As the exponent is determined 
in arbitrary dimensions, we will be able to gain information concerning the perturbative 
structure of y ( g )  to all orders in perturbation theory, as well as to gain q in three 
dimensions, where QED is super-renormalizable. Various authors have examined three- 
dimensional QED to understand mass generation as well as the thermal properties of 
gauge theories [3,4] and other problems [SI. Secondly, the current situation with the 
large Nr expansion for QED is that the model has only been solved analytically to 
O(l/N,) [3]. As the method of [2] provides a straightforward way of going beyond 
this order, which has been carried out in a number of other models [6-81, it is important 
todraw attention to its potential application to QED. Wenote that aprevious application 
of the theory of critical behaviour to gauge theories included solving for the infrared 
asymptotic properties of the gluon propagator in the absence of matter fields [9]. 
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We begin by recalling the important features of QED required here and to fix 
notation we note that the massless Lagrangian is 

where e is the electron coupling constant, and appears in the kinetic term of the U(1) 
gauge field, A,, in anticipation of the application of the exponent method [2], F,. = 
d,A,-d,A, and $', with 1 S is N r ,  correspond to the NI electron flavours. We have 
also included the covariant gauge fixing term, with gauge parameter b. The p-function 
for ( 1 )  in minimal subtraction is [lo-121 

(2) 
p ( g )  = ( d  -4)g +$Nrg2+fNfg3 -- NI (22Nr+9)g4+O(gs) 

144 

where we use the conventions of [I21 but have defined g = (e/2r)', and (2) defines 
the non-trivial zero, g,. The anomalous dimension of the fermions is [ll], 

Y ( g )  =fbg -&(4Nr+3)g2+O(g3)  ( 3 )  
in the same scheme. 

The method we use, based on  121, involves solving the skeleton Dyson equations 
with dressed propagators for the fields +' and A, precisely at the non-trivial critical 
point. As in [2] we assume the fields satisfy asymptotic scaling and define the respective 
asymptotic scaling functions in momentum space as [6-9] 

The quantities ~11 and p are the critical exponents of each field and are functions of 
d = 2p, the dimension of spacetime, and Nr by the universality principle. Also, A and 
B are the amplitudes of each field and do  not depend on the momentum k or the 
exponents [2]. Ensuring that these propagators satisfy the Dyson equations leads to 
the consistency equations which give the exponents. In ( 5 ) ,  it is clear that the transverse 
and longitudinal pieces of the full propagator are of differing dimensions [6,9], which 
is because the longitudinal part is not affected by the interaction [13]. Thus the total 
propagator in a general covariant gauge, b # 0, is not conformally invariant. However, 
in this letter we consider only the Landau gauge, b = 0, where the propagator is 
conformal, and focus on  the transverse part of the propagator, as the method does 
not appear to be applicable in the b # 0 case [9]. The exponents of the fields can be 
related to the more conventional exponents via 

a = p -  I+$? p = 1 - q - x  (6) 
where 7 and x are, respectively, the anomalous dimension of the electron field and 
the electron photon interaction of ( l ) ,  and both are O ( l / N r )  in the large Nr expansion. 

The skeleton Dyson equations satisfied by each field are given in figure 1 where 
we ignore tadpole graphs as they do  not contribute to the scaling. The inverses of (4) 
and ( 5 )  are denoted by and A-' respectively where, in keeping with [6,91, we 
invert A,, on the transverse subspace, and thus 

1 
A;; = B ( k 2 ) p - ,  [ ?.+;.I. k +-' = A ( k 2 ) m - , + l  (7) 
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Figure 1. Skeleton Dyson equations with dressed propagators 

With (4), ( 5 )  and (7), it is straightforward to compute the (massless) one loop integrals 
of figure 1 to obtain 

from the first graph, where we have used the rules for integrating chains of propagators 
[7,14]. Wehavesetz=A'Banddefined u ( a , , a 2 , a , ) = ? r ' n l = , a ( a , ) , w h e r e a ( a ) =  
U p  - a ) / r ( a ) .  The powers of p 2 ,  where p is the non-zero momentum, have cancelled 
since x = 0 in this leading order approximation [2]. For the second graph, only the 
transverse part is relevant and projecting out, one is left with 

8 a 2 N f  
0 = l +  u ( p - a - l , p - a , 2 a + I ) 2 .  

( p - m - l ) ( Z a + l )  (9) 

Eliminating z from (8) and (9) gives the consistency equation satisfied by v, which is 
the only unknown, and with a = p - 1 +fq, = 1 - q and q = Z z ,  vi f NI, we obtain 

We make several remarks concerning (lo),  which is the main result of this letter. 
Fist, setting d = 4-28 in (10) and expanding in powers of E one finds agreement with 
the two loop anomalous dimension y(g),  (3), in the Landau gauge since they are 
related via q = y(g,) .  Moreover, one can go beyond the two-loop expression of (3) 
and deduce the coefficients of the leading order terms in y(g)  to all orders in perturba- 
tion theory. First, from (2), 

3 
&=--E-- Nr 4N: 

so that the first term of (11) is relevant for the higher order terms of (3). Setting 
m 

y ( g ) =  -k(4Nf+3)g2+ "-2  1 a,N;g"+'+O($)  

where we recall that gNr is held fixed in the large Nr expansion, then the unknown 
coefficients, a., can he read off from (10). In particular, the first few terms give 

(13) 
which we believe have not been given before. Hence, a transcendental coefficient will 
arise at fifth order in perturbation theory and more generally c(n) will appear at 
O(gn+2), n 3 3. Second, we can evaluate 11 in three dimensions and find 

35 I 1471 
a n = L  72 a 3 = m  a4= Am- C(3)) 



L434 Letter to the Editor 3 

which is in agreement with recent calculations [4,5], though these were carried out in 
strictly three dimensions, which provides another check on our result. 

We conclude noting that we have demonstrated that the method of [2] can be 
applied to QED to obtain results consistent with the known results of perturbation 
theory and to deduce the structure at higher orders. To go beyond the order computed 
here, one has not only to expand ( 8 )  and (9) to 0(1/N:) but also to include the two- 
and three-loop graphs which contribute at the next order, which will give a deeper 
insight into the nature of both the three- and four-dimensional models. 
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